

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
ENGINEERING SCIENCE N3
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Answers must be rounded off to THREE decimal places.
5. ALL the calculations should consist of at least the following THREE steps:

The formula used or the manipulation thereof
Substitution of the given data in the formula
The answer with the correct SI unit
6. Drawing instruments must be used for all drawings/diagrams.
7. All drawings/diagrams must be fully labelled.
8. The constant values, as they appear on the attached information sheet, must be used wherever possible.
9. Keep subsections of questions together.
10. Rule off on completion of each question.
11. Use $\mathrm{g}=9,8 \mathrm{~m} / \mathrm{s}^{2}$
12. Write neatly and legibly.

QUESTION 1: MOTION, ENERGY AND POWER

1.1 State the law of conservation of energy in words.
1.2 A motorcar with a mass of 0,9 ton is parked on an incline $A B$ of $1: 20$. The motorcar departs from rest at A and within 12 seconds reaches a speed of 144 km/h.

If all frictional losses are neglected, calculate:

1.2.1 The acceleration of the car from A to B
1.2.2 The pulling force of the car's engine
1.2.3 The length of the gradient
1.2.4 The power of the car's engine
1.2.5 The potential energy at B
1.3 A Gautrain experiences a tractive resistance of 280 N per 1000 kg when it moves.

If the Gautrain exerts a force of 80 kN when it has a mass of 40000 kg , calculate the acceleration of the Gautrain.

QUESTION 2: MOMENTS

2.1 State the law of moments.
2.2 Given: a light horizontal beam ABCDEF of a uniform cross-section, loaded as shown.

2.2.1 Calculate the reaction of the supports B and E.
2.2.2 Draw a shear-force diagram, using a suitable scale. Show all the main values on the diagram.

QUESTION 3: FORCES

3.1 Explain the law of triangle of forces.
3.2 Determine the magnitude and direction of the resultant force acting on the system of forces in equilibrium as shown in the figure below.

3.3 Define the term direct force, and give TWO types of direct force.

QUESTION 4: FRICTION

4.1 Give TWO disadvantages of friction as related to engineering.
4.2 A body with a mass of 60 kg is placed on an inclined plane making an angle of 20° with the horizontal. The coefficient of friction is 0,4 . A force F at an angle of 30° to the plane is required to pull the body up the plane.

Calculate the following:
4.2.1 \quad The component F parallel to the plane
4.2.2 The gravity component parallel to the plane
4.2.3 The gravity component perpendicular to the plane
4.2.4 \quad The magnitude of F

QUESTION 5: HEAT

5.1 Define specific heat capacity of a substance.
5.2 45 steel shafts are cooled down in 5 litres of water. The initial temperature of the shafts is $180^{\circ} \mathrm{C}$ and that of the water is $20^{\circ} \mathrm{C}$.

If the final temperature of the mixture is $93,97^{\circ} \mathrm{C}$, the specific heat capacity of steel is $0,5 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$ and that of water is $4,187 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$:

Calculate the mass of EACH steel shaft.
5.3 Steam is generated at a pressure of $2,85 \mathrm{MPa}$ to a dryness fraction of 0,96 . The steam is now superheated to a temperature of $300^{\circ} \mathrm{C}$. The specific heat capacity of this superheated steam is $2,9 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.

Calculate, for 1 kg of steam, the amount of heat energy required for each of the following:
5.3.1 Enthalpy in the wet steam
5.3.2 Dry steam $\left(\mathrm{h}_{\mathrm{g}}\right)$
5.3.3 Superheated steam $\left(h_{\text {su }}\right)$
5.4 A fuel with a heat energy value of $42 \mathrm{MJ} / \mathrm{kg}$ is used in an engine that develops 12 kW during a test. The test lasts for 35 minutes and a thermal efficiency of 45% is obtained.

Calculate the following:
5.4.1 The equivalent power of the fuel
5.4.2 The heat energy dissipated by the fuel
5.4.3 The mass of the fuel used (3×2)

QUESTION 6: HYDRAULICS

6.1 Define the unit pascal.
6.2 The following data refer to a single-acting hydraulic press:

Area of plunger $=0,09 \mathrm{~m}^{2}$
Stroke of plunger $=13 \mathrm{~cm}$
Area of ram $=0,45 \mathrm{~m}^{2}$
Force applied to plunger $=300 \mathrm{~N}$
Ignore any losses.
Calculate the following:
6.2.1 The volume of liquid, in litres, displaced by the plunger in 10
strokes
6.2.2 The distance moved by the ram, in mm, after one pumping stroke of the plunger
(2×3)
6.3 State Pascal's law in words.
6.4 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'true' or 'false' next to the question number (6.4.1-6.4.2) in the ANSWER BOOK.
6.4.1 The SI unit of pressure is Pascal
6.4.2 $1 \mathrm{~m}^{3}=10000 \mathrm{~cm}^{3}$

$$
\begin{equation*}
(2 \times 1) \tag{2}
\end{equation*}
$$

QUESTION 7: ELECTRICITY

7.1 State Faraday's first law of electrolysis.

Abstract

7.2 Four cells, each with an EMF of 2 V and an internal resistance of $0,2 \Omega$ per cell, are connected in series. The battery is then connected to two parallelconnected resistors of 3Ω and 6Ω respectively, and a third resistor of 2Ω is connected in series with the two parallel resistors.

Calculate the following:
7.2.1 The total resistance of the circuit
7.2.2 The total current flow
7.2.3 The voltage drop across the internal resistance

7.2.4 The current through the $3-\Omega$ resistor

7.3 The resistance of the heating element of a heater is 55Ω. A current of 5 A flows through the heater for 6 hours.

Calculate the following:
7.3.1 The quantity of heat released
7.3.2 The cost if the tariff is 27,45 cents per kW.h (2×2)

QUESTION 8: CHEMISTRY

8.1 Explain the term oxidation.
8.2 Give FOUR precautions against corrosion on iron.
8.3 Give the chemical formula for table salt.

FORMULA SHEET

All the formulae needed are not necessarily included.
Any applicable formula may also be used.

$W=F . s$	$m_{l} \cdot u_{l} \pm m_{2} \cdot u_{2}=m_{l} \cdot v_{l} \pm m_{2} \cdot v_{2}$
$\mathrm{W}=\rho . \mathrm{V}$	$D_{e}=(D+t)$
$P=\frac{W}{t}$	$h_{\text {nat/wet }}=h_{f}+x . h_{f g}$
Uitset/Output	$P=2 . \pi \cdot T . n \ldots T=F . r$
$\eta=\frac{\text { Inset/Input }}{} 100 \%$	$P=\frac{F_{R A M}}{A_{R A M}}=\frac{F_{P L}}{A_{P L}} \ldots A=\frac{\pi D^{2}}{4}$
$F=m . a$	$A_{R A M}=\frac{A_{P L}}{\cdots} A=\frac{4}{4}$
F_{μ}	$V_{R A M}=V_{P L} \times n$
$=\frac{N_{R}}{}$	$A_{R A M} \cdot H_{R A M}=A_{P L} \cdot L_{P L}$
$\mu=\tan \Phi$	$F_{X}=F \cos \theta$
$N_{R}=F_{C} \pm F_{T} \sin \alpha \ldots a=0$	$F_{Y}=F \sin \theta$
$F_{S}=w \sin \theta$	$\Sigma F_{X}=F_{l} \cos \theta_{l}+\ldots+F_{n} \cos \theta_{n}$
$F_{C}=w \cos \theta$	$\Sigma F_{y}=F_{l} \sin \theta_{l}+\ldots+F_{n} \sin \theta_{n}$
$F_{T} \cos \alpha=F_{\mu} \pm F_{S} \ldots a=0$	$R=\sqrt{\Sigma F_{X}^{2}+\Sigma F_{Y}^{2}}$
$F_{e}=T_{l}-T_{2}$	ΣF_{Y}
$\underline{T_{1}}{ }^{\prime}=$ tension ratio	ΣF_{X}
T_{2}	$Q=m . c . \Delta t \ldots t_{F}=t o \pm \Delta t$
$P=F_{e} . v$	$m . w w=Q=m . h v$
$v=\pi \cdot d \cdot n \ldots n=\frac{N}{60}$	$P=\frac{Q}{t}$
$W_{\mu}=F_{\mu} \cdot s$	$\Delta L=L o . \alpha . \Delta t \ldots L_{f}=L o \pm \Delta L$
$\Delta E_{p}=m . g . \Delta h$	$\Delta A=A_{0} \cdot \beta \cdot \Delta t \ldots A_{f}=A_{0} \pm \Delta A$
$\Delta E_{K}=\frac{1}{2} \cdot m \cdot \Delta v^{2}$	2.a.s $=v^{2}-u^{2}$
$Q=I^{2} . R . t$	$s=u \cdot t+\frac{1}{2} \cdot a \cdot t^{2}$
$m=I . z . t$	$v=u+a . t$
$\frac{V_{P}}{V_{S}}=\frac{N_{P}}{N_{S}}=\frac{I_{S}}{I_{P}}$	$\Sigma \uparrow F=\Sigma \downarrow F$
$V_{S}=\frac{N_{S}}{I_{P}}$	$M=F . \perp s$

$\Sigma C W M=\Sigma A C W M$
$P_{A B S}=P_{A T M}+P_{M E T}$
$P=\delta \times g \times h$
$\frac{1}{R_{P A R}}=\frac{1}{R_{l}}+\ldots+\frac{1}{R_{n}}$
$R_{S E R}=R_{l}+\ldots R_{n}$
$V_{1}-V_{2}=-e\left(U_{1}-U_{2}\right)$
$V=I \times R$

INFORMATION SHEET

PHYSICAL CONSTANTS

QUANTITY	CONSTANTS KONSTANTE	HOEVEELHEID
Atmospheric pressure	$101,3 \mathrm{kPa}$	Atmosferiese druk
Density of copper	$8900 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van koper
Density of aluminium	$2770 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van aluminium
Density of gold	$19000 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van goud
Density of alcohol (ethyl)	$790 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van alkohol (etiel)
Density of mercury	$13600 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van kwik
Density of platinum	$21500 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van platina
Density of water	$1000 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van water
Density of mineral oil	$920 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van minerale olie
Density of air	$1,05 \mathrm{~kg} / \mathrm{m}^{3}$	Digtheid van lug
Electrochemical equivalent of silver	$1,118 \mathrm{mg} / \mathrm{C}$	Elektrochemiese ekwivalent van silwer
Electrochemical equivalent of copper	$0,329 \mathrm{mg} / \mathrm{C}$	Elektrochemiese ekwivalent van koper
Gravitational acceleration	9,8 m/s ${ }^{2}$	Swaartekragversnelling
Heat value of coal	$30 \mathrm{MJ} / \mathrm{kg}$	Warmtewaarde van steenkool
Heat value of anthracite	$35 \mathrm{MJ} / \mathrm{kg}$	Warmtewaarde van antrasiet
Heat value of petrol	$45 \mathrm{MJ} / \mathrm{kg}$	Warmtewaarde van petrol
Heat value of hydrogen	$140 \mathrm{MJ} / \mathrm{kg}$	Warmtewaarde van waterstof
Linear coefficient of expansion of copper	$17 \times 10^{-5} /{ }^{\circ} \mathrm{C}$	Lineêre uitsettingskoëffisiënt van koper
Linear coefficient of expansion of aluminium	$23 \times 10^{-5} /{ }^{\circ} \mathrm{C}$	Lineêre uitsettingskoëffisiënt van aluminium
Linear coefficient of expansion of steel	$12 \times 10^{-5} /{ }^{\circ} \mathrm{C}$	Lineêre uitsettingskoëffisiënt van staal
Linear coefficient of expansion of lead	$54 \times 10^{-5} /{ }^{\circ} \mathrm{C}$	Lineêre uitsettingskoëffisiënt van lood
Specific heat capacity of steam	$2100 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$	Spesifieke warmtekapasiteit van stoom
Specific heat capacity of water	$4187 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$	Spesifieke warmtekapasiteit van water
Specific heat capacity of aluminium	$900 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$	Spesifieke warmtekapasiteit van aluminium
Specific heat capacity of oil	$2000 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$	Spesifieke warmtekapasiteit van olie
Specific heat capacity of steel	$500 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$	Spesifieke warmtekapasiteit van staal
Specific heat capacity of copper	$390 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$	Spesifieke warmtekapasiteit van koper

